Intraoperative Periprosthetic Femur Fracture: A Biomechanical Analysis of Cerclage Fixation

Nicholas B. Frisch, MD, MBA a, Michael A. Charters, MD, MS a, Jakub Sikora-Klak, BS b, Richard F. Banglmaier, PhD a, Daniel J. Oravec, M.S. c, Craig D. Silverton, DO a

a Henry Ford Health System Department of Orthopaedic Surgery, Detroit, Michigan
b Wayne State University School of Medicine, Detroit, Michigan
c Bone and Joint Center, Henry Ford Hospital, Detroit, Michigan

ARTICLE INFO

Article history:
Received 8 August 2014
Accepted 21 February 2015
Available online xxx

Keywords:
total hip arthroplasty
periprosthetic fracture
revision
cerclage
cerclage fixation

Abstract

Intraoperative periprosthetic femur fracture is a known complication of total hip arthroplasty (THA) and a variety of cerclage systems are available to manage these fractures. The purpose of this study was to examine the in situ biomechanical response of cerclage systems for fixation of periprosthetic femur fractures that occur during cementless THA. We compared cobalt chrome (CoCr) cables, synthetic cables, monofilament wires and hose clamps under axial compressive and torsional loading. Metallic constructs with a positive locking system performed the best, supporting the highest loads with minimal implant subsidence (both axial and angular) after loading. Overall, the CoCr cable and hose clamp had the highest construct stiffness and least reduction in stiffness with increased loading. They were not demonstrably different from each other.

© 2015 Elsevier Inc. All rights reserved.

Methods

Femoral Preparation

Twenty-four large 4th generation composite femurs (model 3404, SawBones, Pacific Research Laboratories, Inc., Vashon, Washington) were used in this study. The femurs were prepared according to the manufacturer technique guide for an uncemented, tapered femoral stem (Zimmer M/L Taper, Warsaw, Indiana). A standard femoral neck osteotomy was performed with an oscillating saw at a height of 10 mm proximal to the lesser trochanter. A box punch and canal finder were inserted into the femur, followed by a lateralizing reamer. The femur was then broached sequentially to size 12.5. A periprosthetic fracture was created with a thin kerf blade (0.022 inch) band saw by placing the femur in a standardized jig and creating a longitudinal fracture extending 127 mm distally from the osteotomy plane. Using a band...
saw allowed for creation of a uniform and repeatable fracture pattern [32,36,37]. When considering intraoperative periprosthetic fractures, it has been suggested that the most common fracture pattern occurs from the level of the femoral neck down to the lesser trochanter, in the proximal 1/3 of the femur and as such our fracture modeled these previously reported patterns [1,6,14,15,28,29,38]. The femur was placed in a jig designed to standardize distal femur resection and the femoral condyles were resected 7 cm proximal to the distal end of the femur. The femur was then potted in custom made axial compression or torsional test fixtures using a two part epoxy filler and allowed to cure (Figs. 1 and 2).

Construct Preparation

The periprosthetic fracture was reduced using two cerclage constructs, one proximally at the level of the lesser trochanter and the other located 51 mm distal to the proximal position. This configuration was based on previously published reports and senior surgeon experience [24,29,37,39]. Tensioning of each construct was performed using the manufacturers’ specification. Cobalt–chrome (CoCr) (1.6 mm Dall-Miles cables, Stryker) and synthetic cables (SuperCables, Kinamed, Camarillo, CA) were tensioned with the manufacturer tensions. Hose clamp tensioning is engaged by a worm-screw so a torque limiting screw driver was used (25 in/lb). Monofilament wires (16 gauge stainless steel) were tensioned using an aeronautic safety wire twister (Milbar model 25W, Stride Tool, Glenwillow, OH). A total of six femurs were prepared for each of the four constructs: 1) CoCr cable, 2) hose clamp, 3) monofilament wire, and 4) synthetic cable (Fig. 1). After placement of the cerclage construct to reduce and fix the standardized fracture pattern, a size 12.5 femoral component (Zimmer M/L Taper, Warsaw, Indiana) with standard neck was impacted into the proximal femur and a 32 mm +0 CoCr femoral head was impacted onto the truncus. All constructs were prepared by the senior surgeon.

Axial Load Testing

Three femurs per construct type were selected for axial load testing. The potted distal end was clamped into the servohydraulic test frame (Model 8501M,Instron, Norwood, MA) and angled at 25° of adduction and 0° of anteversion to approximate single-leg stance. At the proximal end, the femoral head of the implant interfaced with a hemi-circular loading plate attached to the actuator applying the load. The axial tests were started by applying a 50 N preload followed by a loading rate of 0.8 mm/min. Axial load testing was terminated after a displacement of 20 mm.

Fig. 1. Cerclage constructs.

Fig. 2. Torsional test setup of femoral constructs. Note, the proximal femur is at the bottom of the figure and the distal femur is at the top. (A) Entire femoral construct installation in the Instron. (B) Detail of distal femur potting and interface to the Instron actuator. (C) Detail of proximal clamping and interface to the Instron torque cell.

The mechanical parameters that were measured during axial load testing included: subsidence onset and failure force, subsidence onset and failure displacement, stiffness, and total implant subsidence within the femur. The load–displacement histories are subdivided into two regions delineating the start of implant subsidence and characterized by two stiffnesses. Stiffness is defined as the slope of the linear part of the curve in these two regions. Subsidence onset force and displacement are defined as the intersection of the lines defining these two stiffnesses. Failure force and displacement were defined as the force maximum preceding a rapid force drop, indicative of hardware or femur failure. Total implant subsidence within the femur is defined as the difference between the failure displacement and the subsidence onset displacement. High definition video recorded during each trial was correlated with the biomechanical results on the force–displacement plots.

Comparisons of these parameters were then conducted between construct groups by one-way ANOVA and post-hoc Tukey–Kramer comparison except for the subsidence values, which were log transformed prior to statistical analysis due to failed normality tests. Regression analysis was used to determine the relationship between the total implant subsidence and the other mechanical parameters studied. The regression analysis is important because it indicates a relationship between...
the clinically detectable parameter, implant subsidence, and the mechanical test parameters, which identifies predictive links that may aid future implant design and performance.

Torsional Load

Three femurs per construct type were used in the torsional tests. The potted distal end of the femur was mounted to the rotary actuator while the proximal end was clamped around the head and neck of the implant and interfaced with a torque cell mounted to the test frame (Fig. 2). Rotational displacements were applied to the distal end and simulated the loading of an internally rotated femur during activities of rising from a seated position or stair climbing. Moments were applied at a rate of 2.4°/s and rotated through 40°. All constructs were taken to failure with the loading protocol.

Torque cell and actuator output were recorded during each test to capture the applied torque and rotation. A circumferential gauge was mounted to the proximal clamp and a dial attached to the proximal femur. The dial and gauge were used to determine the resultant angular subsidence of the implant stem relative to the femur.

The mechanical parameters of torque, rotational displacement, stiffness, and implant rotational subsidence were obtained from the applied torque and rotation data and collected during each test. Rotational subsidence, similar to axial subsidence, is the movement of the stem relative to the femur. This is different from rotational displacement which is the rotation of the entire construct. High definition video recorded during each trial was correlated with the biomechanical results on the torque–displacement plots.

Comparisons of these parameters were then conducted between construct groups by one-way ANOVA and post-hoc Tukey-Kramer comparison. Comparison between initial and final values was conducted using Student’s t-test. Regression analysis was used to determine the relationship between the total angular subsidence and the other mechanical parameters studied. The regression analysis is important because it indicates a relationship between the clinically detectable parameter, implant subsidence, and the mechanical test parameters, which identifies predictive links that may aid future implant design and performance. A basic cost analysis was also performed.

Results

Axial Load

The typical load–displacement pattern for each construct is demonstrated in Fig. 3 (hose clamps, synthetic cables, and monofilament wires) and Fig. 4 (CoCr cables). In axial load testing, the constructs had load–displacement histories that exhibited two distinct loading regions (R1 and R2) with an associated stiffness (S1 and S2). The transition between R1 and R2 was delineated by an “elbow” in the load–displacement history, which corresponded to a decrease of the construct stiffness and the initiation of stem subsidence within the femur, verified by video analysis of individual tests. It was noted that the CoCr cable constructs exhibited three points on the load–displacement curve in which there was rapid displacement for the same applied load prior to catastrophic failure. Failure (i.e., the end of region R2) was determined to correspond with the first point of rapid displacement on the load–displacement curve.

Subsidence onset force and subsidence onset displacement were the force and displacement corresponding to the initiation of femoral stem subsidence within the femoral metaphysis. The mean subsidence onset force was 2548 N (±198 N SD) for hose clamps, 2501 N (±437 N SD) for CoCr cables, 1990 N (±426 N SD) for synthetic cables, and 1374 N (±550 N SD) for monofilament wire (Fig. 5). Mean subsidence onset force in the CoCr cables and hose clamps was greater than monofilament wires (P < 0.05). The mean subsidence onset displacement was 1.60 mm (±0.29 mm SD) for hose clamps, 1.66 mm (±0.70 mm SD) for CoCr cables, 2.04 mm (±0.58 mm SD) for synthetic cables, and 1.55 mm (±0.82 mm SD) for monofilament wire (Fig. 6). There were no statistical differences in subsidence onset displacement between cerclage constructs (P > 0.05).

Failure force and failure displacement were the force and displacement when there was catastrophic failure of the construct. The mean failure force was 9400 N for hose clamps, 7237 N for CoCr cables, 5781 N for synthetic cables, and 4010 N for monofilament wires. The differences in failure force all reached statistical significance (P < 0.05). The mean failure displacement was 10.86 mm (±1.32 mm SD) for hose clamps, 8.80 mm (±1.18 mm SD) for monofilament wire, 15.22 mm (±3.94 mm SD) for synthetic cables, and 18.61 mm (±1.18 mm SD) for monofilament wire (Fig. 6). The mean failure displacements are predictive links that may aid future implant design and performance.
The displacement of CoCr cables was lower than synthetic cables and monofilament wires \((P < 0.05)\). The mean failure displacement of hose clamps was lower than monofilament wires \((P < 0.05)\).

Construct stiffness was measured in the two different regions (R1 and R2) on the force-displacement plot, and a distinct reduction in construct stiffness was noted from R1 to R2. R1 stiffness was between 1153 N/mm and 1971 N/mm while the R2 stiffness ranged from 274 N/mm to 882 N/mm. In R1, there were no statistical differences \((P > 0.05)\) in stiffness between cerclage constructs (Fig. 7). In R2, both hose clamps and CoCr cables had higher stiffness than the synthetic cables and monofilament wires \((P < 0.05)\).

Total implant subsidence was measured as the displacement from the end of R1 when the implant began to subside to the catastrophic failure point at the end of R2. Mean total implant subsidence was 9.26 mm \((± 1.62 \text{ mm SD})\) for hose clamps, 7.14 mm \((± 0.57 \text{ mm SD})\) for CoCr cables, 13.18 mm \((± 3.46 \text{ mm SD})\) for synthetic cables, and 17.06 mm \((± 0.51 \text{ mm SD})\) for monofilament wire (Fig. 8). The total implant subsidence data failed tests of normality and were therefore log transformed to perform statistical tests. Total implant subsidence was lower in CoCr cables than in synthetic cables and monofilament wires \((P < 0.05)\). Total implant subsidence was lower in hose clamps than in monofilament wires \((P < 0.05)\).

A regression analysis was performed to evaluate the relationship between total implant subsidence and the several mechanical parameters discussed above. This showed that the subsidence onset force, failure force, and R2 stiffness were negatively associated to the subsidence displacement. Conversely, the subsidence and failure displacement had a positive relationship. All of the mechanical parameters (failure force, failure displacement, and R2 stiffness) in the subsiding region, R2, of the compression tests were significantly associated with total implant subsidence \((P < 0.05)\). The only mechanical parameter in the presubsidence region, R1, which had a significant effect was the subsidence onset force \((P < 0.05)\).

Torsional Load

The typical torque–displacement pattern for each construct is demonstrated in Fig. 9. In torsional load testing, 10 of the 12 cerclage constructs displayed torque–displacement histories that exhibited two distinct loading regions (R1 and R2) with an associated stiffness...
which was similar to axial load testing. The transition between R1 and R2 was delineated by a sharp drop in the load–displacement history corresponding to spiral propagation of the simulated periprosthetic fracture. In the first torsional loading region (R1), failure started at the apex of the simulated periprosthetic fracture and progressed in a spiral pattern to the apex of the simulated fracture on the opposite side of either the medial or lateral fragment. The next torsional loading region (R2) ended when there was catastrophic failure of the femoral metaphysis. This was verified by video recordings of the individual tests. The two failures that did not follow these typical fracture events had a singular catastrophic failure of the femoral metaphysis. This occurred in one of the CoCr cable constructs and one of the hose clamp constructs. Lastly, the only cerclage cable that failed among all the tests was the proximal cable of one synthetic construct. Initial failure torsion (T1) and rotational displacement occurred at the failure of either the medial or lateral fragment and prior to initiation of complete failure. Mean initial failure torsion (T1) was 41.28 Nm (±7.84 Nm SD) for hose clamps, 41.21 Nm (±0.93 Nm SD) for CoCr cables, 32.24 Nm (±3.42 Nm SD) for synthetic cables, and 28.21 Nm (±1.28 Nm SD) for monofilament wire (Fig. 10). T1 was higher in CoCr cables than in monofilament wires (P < 0.05). There were no statistical differences (P > 0.05) in mean initial failure rotational displacement between cerclage constructs, which ranged from approximately 11°–12° (Fig. 11).

Failure torsion and rotational displacement occurred when there was catastrophic failure of the construct through the femoral metaphysis. Mean construct failure torsion (T2) was 37.75 Nm (±4.47 Nm SD) for hose clamps, 36.75 Nm (±2.77 Nm SD) for CoCr cables, 31.43 Nm (±1.53 Nm SD) for synthetic cables, and 29.86 Nm (±1.30 Nm SD) for monofilament wire (Fig. 10). T2 was higher in CoCr cables than in monofilament wires (P < 0.05). There were no statistical differences (P > 0.05) in mean failure rotational displacement between cerclage constructs (Fig. 11).

Mean initial (S1) and final construct rotational stiffness (S2) are depicted in Fig. 12. S1 of the hose clamp was greater than the synthetic cable (P < 0.05). S2 of the hose clamps and CoCr cables was greater than the monofilament wires (P < 0.05).

Mean total angular implant subsidence was 3.67° (±0.75° SD) for hose clamps, 6.77° (mean subsidence value not available due to lost data from measurement recording failure) for CoCr cables, 7.14° (±1.60° SD) for synthetic cables, and 5.76° (±1.15° SD) for monofilament wire. There were no statistical differences (P > 0.05) in total angular implant subsidence between cerclage constructs (CoCr construct not

(S1 and S2), which was similar to axial load testing. The transition between R1 and R2 was delineated by a sharp drop in the load–displacement history corresponding to spiral propagation of the simulated periprosthetic fracture. In the first torsional loading region (R1), failure started at the apex of the simulated periprosthetic fracture and progressed in a spiral pattern to the apex of the simulated fracture on the opposite side of either the medial or lateral fragment. The next torsional loading region (R2) ended when there was catastrophic failure of the femoral metaphysis. This was verified by video recordings of the individual tests. The two failures that did not follow these typical fracture events had a singular catastrophic failure of the femoral metaphysis. This occurred in one of the CoCr cable constructs and one of the hose clamp constructs. Lastly, the only cerclage cable that failed among all the tests was the proximal cable of one synthetic construct.

Initial failure torsion (T1) and rotational displacement occurred at the failure of either the medial or lateral fragment and prior to initiation of complete failure. Mean initial failure torsion (T1) was 41.28 Nm (±7.84 Nm SD) for hose clamps, 41.21 Nm (±0.93 Nm SD) for CoCr cables, 32.24 Nm (±3.42 Nm SD) for synthetic cables, and 28.21 Nm (±1.28 Nm SD) for monofilament wire (Fig. 10). T1 was higher in CoCr cables than in monofilament wires (P < 0.05). T1 was higher in hose clamps than in monofilament wires (P < 0.05). There were no statistical differences (P > 0.05) in mean initial failure rotational displacement between cerclage constructs, which ranged from approximately 11°–12° (Fig. 11).

Failure torsion and rotational displacement occurred when there was catastrophic failure of the construct through the femoral metaphysis. Mean construct failure torsion (T2) was 37.75 Nm (±4.47 Nm SD) for hose clamps, 36.75 Nm (±2.77 Nm SD) for CoCr cables, 31.43 Nm (±1.53 Nm SD) for synthetic cables, and 29.86 Nm (±1.30 Nm SD) for monofilament wire (Fig. 10). T2 was higher in CoCr cables than in monofilament wires (P < 0.05). There were no statistical differences (P > 0.05) in mean failure rotational displacement between cerclage constructs (Fig. 11).

Mean initial (S1) and final construct rotational stiffness (S2) are depicted in Fig. 12. S1 of the hose clamp was greater than the synthetic cable (P < 0.05). S2 of the hose clamps and CoCr cables was greater than the monofilament wires (P < 0.05).

Mean total angular implant subsidence was 3.67° (±0.75° SD) for hose clamps, 6.77° (mean subsidence value not available due to lost data from measurement recording failure) for CoCr cables, 7.14° (±1.60° SD) for synthetic cables, and 5.76° (±1.15° SD) for monofilament wire. There were no statistical differences (P > 0.05) in total angular implant subsidence between cerclage constructs (CoCr construct not
included in this analysis. A regression analysis was used to evaluate the association between mean total angular implant subsidence and the mechanical parameters studied. Initial construct stiffness was the only mechanical parameter that reached statistical significance and it was found to be negatively associated with mean total angular implant subsidence (P < 0.05).

Discussion

The purpose of this study was to compare the biomechanical performance of multiple cerclage constructs for fixation of intraoperative periprosthetic femur fractures during cementless THA. Cable systems have been shown previously to have better biomechanical performance than wire systems [22,40]. However, metal cables have disadvantages such as metallic debris from their fragmentation and fraying, interruption of the cortical blood supply and, increased risk of injury and disease transmission to the surgeon from surgical glove punctures [27]. Nonmetallic cerclage applications have been utilized with encouraging results from both clinical [23] and in vivo animal studies [24,25]. Previous laboratory study of nonmetallic constructs has failed to demonstrate superiority over metallic cables [26,41]. Additionally, very little biomechanical information is available for intraoperative periprosthetic femur fractures repaired using synthetic cerclage cables in comparison with metallic cerclage systems. Although cerclage cable provides more strength than twisted monofilament wire, cable use can be more challenging in less invasive surgery as the cable crimping instrument cannot pass through a small incision [18–21]. The growing popularity of minimally invasive procedures has led to a renewed interest in wire cerclage systems. However, the clinical implications of reverting back to a biomechanically less stable fixation method have not been well vetted.

Cable cerclage systems, whether metallic or synthetic, have a biomechanical advantage over twisted monofilament wire systems. For axial compression and torsion, CoCr cables were consistently stronger in both regions and stiffer throughout R2 than the monofilament wires. CoCr cables were also better at resisting implant migration. Synthetic cables had greater strength and higher stiffness than monofilament wires, but their significance was not detectable. This advantage may be associated with the positive locking mechanism in the cable construct design compared to the twisted monofilament wires. Clinically, however, the mechanical advantage of cable cerclage systems may be partially negated due to the challenges associated with using a crimping tool or mechanical fastening device. Other mechanical studies have suggested that the twist may be a source of weakness for monofilament wire fixation [25,42]. Video analysis during our study showing unwinding of the monofilament wires confirmed this failure mechanism, which began in R1 prior to the force or stiffness drop. Loosening of the other cerclage systems was prevented by the positive locking mechanism of their design as witnessed by the metallic cable slippage in the axially compressive loading tests and the synthetic cable breakage during one axially compressive test and one torsional test.

In light of metallic cable wear and injury disadvantages [27], nonmetallic cerclage applications have been considered and improved upon from earlier designs [23–26,41]. In situ biomechanical response of the synthetic cables proved to be as good as twisted monofilament wires. Their mechanical behavior exceeded that of monofilament wires, but statistical differences were not detected. Compared to the metallic cables, the nonmetallic cables exhibited reduced axially compressive strength and stiffness in R2. In torsion, the response was similar but not significant.

In our study, we determined the point of both initial and catastrophic failures of each device. Other studies have used different definitions for mechanical failure. Talbot et al defined failure when either 10 mm of displacement was reached (clinical failure) or when the first sudden 10% drop in load was observed after reaching a peak load (mechanical failure) [30]. For Lenz et al, construct failure was defined as axial displacement of more than 3 mm, with a stepwise system of loss of pretenion, plastic deformation and then total failure [22]. Zdero et al used catastrophic failure and clinical failure [37]. A construct was considered...
to have undergone “clinical failure” when either 10 mm of vertical deflection was reached (which is a clinically practical limit) or when the first abrupt decrease in applied force was experienced after reaching a peak load (which was deemed to indicate substantial initial structural collapse). Catastrophic failure was often a transverse femoral break near the support base (three of five specimens) or an oblique break at the most distal screw (one of five specimens), occurred in most specimens.

There is no doubt that a catastrophic bone failure is clinically relevant. The axially compressive and torsion experiments in this study exhibited construct subsidence prior to failure of the simulated bone, most notably in the axially compressive tests. From above, axial subsidence may have a threshold value of 10 mm of construct displacement. While all cerclage systems subsided in both test regimes of this study, in the case of axial subsidence, the synthetic cables and monofilament wires exceed this threshold within our axial test regime. This raises the question whether failure is the onset of subsidence or the final subsidence displacement. Our monotonic failure tests allow us to analyze which mechanical parameters are associated with the extent of subsidence so that we can use that data to evaluate those future cyclic tests that would be conducted below the onset of subsidence. It should be noted that the onset of subsidence is greater than average body weight for all cerclage systems. As a result, the main difference between the two test regimes was the mechanical parameter that best predicted the subsidence of the implant. The initial force, or subsidence force, in the compression tests was associated with the level of subsidence that was observed in the implant. The initial construct stiffness in the torsional tests was associated with the amount of implant displacement relative to the femur. While this is different between the two test regimes, it does provide a predictor to the degree of implant subsidence prior to the subsidence yield point and without having to test beyond that threshold.

If subsidence is taken to be a clinically relevant event, then it is important to find predictive mechanical parameters in the region prior to its onset and to understand if the construct retains stability afterwards. Stiffness provides a measure of construct stability. All cerclage systems saw a reduction in stiffness from R1 to R2. Metallic cables retained this stability to a greater extent than the synthetic and monofilament wires in R2. This is important because once the construct has reached region R2, it has already had initial failure. Clinically, this may result in an implant which is loose and needs revision. If this is the case, then the region R1 data are more relevant clinically, and one could argue that there are few clinical differences between the constructs. However, additional clinical testing is needed to make this determination.

Hose clamps are commercially available products that have been used for over 100 years in other industries such as automotive, mechanical and aeronautics. However, they are not FDA approved for this application and are not implantable devices. Their long track record in other industries supports their use in clinical settings.

Fig. 10. Construct initial failure torque (T1) and catastrophic failure torque (T2). Monofilament wire and synthetic cable had significantly lower torque 1 than cobalt–chrome cable ($P < 0.05$). Monofilament wire had significantly lower torque 1 than hose clamp ($P < 0.05$).

Fig. 11. Construct failure rotations. Rotation 1 defined as initial failure angular displacement and Rotation 2 defined as catastrophic failure angular displacement.
industries makes them a valuable control for other cerclage fixation devices. Previous studies have demonstrated the use of hose clamps for both clinical and biomechanical purposes. Chandler et al described using hose clamps clinically for temporary fixation for allofraft struts during periprosthetic fracture fixation [43]. The strength of these hose clamps has made them popular for temporary support while permanent fixation is being applied. Liu et al compared the compressive forces of hose clamps with monofilament wires and metallic cables [44]. They identified the advantages of temporary use with allograft or with cementation of femoral stem into a femur during revision procedures utilized extended trochanteric osteotomies.

This study has several limitations. While synthetic femurs have been shown to model good bone stock relatively well, they cannot be broadly applicable to osteoporotic and lower quality bone. With a synthetic femur, there is no way to assess the impact of soft tissue involvement, which may in practice limit cerclage application and play a role in over-fracture of the femur, there is no way to assess the impact of soft tissue involvement, which may in practice limit cerclage application and play a role in over-fracture of the femur.

The authors would like to thank Yener N. Yeni, Ph.D., Head, Section of Biomechanics, Bone and Joint Center, Henry Ford Hospital, Henry Ford Health System for his support of this project.

References

Please cite this article as: Frisch NB, et al, Intraoperative Periprosthetic Femur Fracture: A Biomechanical Analysis of Cerclage Fixation, J Arthroplasty (2015), http://dx.doi.org/10.1016/j.arth.2015.02.026

